## Pearson Edexcel

## Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE
In Single Science Award (4SS0) Paper 1C

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P71959A
Publications Code 4SSO_1C_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 1 (a) (i) | sulfur | ALLOW S | 1 |
| (ii) | boron | ALLOW B | 1 |
| (iii) | bromine | ALLOW Br/Br ${ }_{2}$ | 1 |
|  |  | ALLOW mercury/Hg |  |
| (b) (i) | 20 /twenty |  | 1 |
| (ii) | $\mathrm{S}^{2-}$ | ALLOW S ${ }^{-2}$ | 1 |
| (iii) | $\mathrm{MgF}_{2}$ | ACCEPT $\mathrm{Mg}^{2+}\left(\mathrm{F}^{-}\right)_{2}$ | 1 |
|  |  |  | Total 6 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 2 (a) (i) <br> (ii) | V is insoluble (in the solvent)/ does not dissolve (in the solvent) <br> M1 X and Z <br> M2 because the top spots are/dye is closest to the solvent front <br> OR the dye/the top spots moved the furthest distance (from the start line) OWTTE | M2 dep on M1 | $1$ <br> 2 |
| (b) | M1 distance from start line to spot to nearest mm 17 to 20 mm <br> M2 distance from start line to solvent front to nearest mm 56 mm <br> M3 answer to $\mathbf{M 1} \div$ answer to $\mathrm{M} 2=\mathrm{R}_{\mathrm{f}}$ value between 0.30 and 0.36 | ACCEPT answers in cm <br> ALLOW 55-57mm <br> ACCEPT any number of sig figs except 1 <br> ALLOW ECF on incorrect measurements for M1 and/or M2 | 3 |
|  |  |  | Total 6 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3 (a) | alkali metals |  | 1 |
| (b) (i) <br> (ii) <br> (iii) <br> (iv) | D potassium sinks <br> A is incorrect as a colourless solution forms $B$ is incorrect as a lilac flame is seen C is incorrect as effervescence occurs may explode /break the trough/ cause a fire <br> $\mathrm{OH}^{-}$ $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$ <br> M1 correct formulae <br> M2 balancing of correct formulae | ALLOW (too) dangerous <br> ALLOW HO- $/ \mathrm{OH}^{1-}$ $/ \mathrm{OH}^{-1}$ <br> ALLOW multiples and fractions <br> IGNORE state symbols even if incorrect <br> M2 dep on M1 | 1 <br> 1 <br> 1 <br> 2 |
| (c) | An explanation that links the following four points <br> M1 giant structure/lattice <br> M2 strong electrostatic attraction <br> M3 between (oppositely charged) ions <br> M4 large amount of energy needed to overcome the forces of attraction/break the bonds | ALLOW strong (ionic) bonds <br> No M2 or M3 if mention of covalent or metallic bonds /intermolecular forces | 4 |
|  |  |  | Total 10 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 (a) (i) <br> (ii) <br> (iii) | propane <br> $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$ | spelling must be correct <br> ALLOW upper case N or different letter e.g. x | 1 1 1 |
| (b) (i) <br> (ii) | shared pair of electrons (between two atoms) <br> An explanation that links the following three points <br> M1 $\mathrm{C}_{4} \mathrm{H}_{10}$ has larger molecules/longer chain ORA <br> M2 $\mathrm{C}_{4} \mathrm{H}_{10}$ has stronger intermolecular forces ORA <br> M3 more energy needed to separate the molecules /overcome the forces in $\mathrm{C}_{4} \mathrm{H}_{10}$ ORA | REJECT if between molecules <br> ALLOW $\mathrm{C}_{4} \mathrm{H}_{10}$ has more carbon (and hydrogen) atoms <br> ACCEPT forces between molecules <br> ALLOW intermolecular bonds <br> No M2 or M3 if implied that covalent bonds break | 1 3 |
| (c) (i) <br> (ii) |  <br> M1 correct repeat unit <br> M2 extension bonds brackets and $n$ <br> Any one from <br> M1 food will not bind to/ bond with the coating <br> M2 hard/tough /long lasting coating <br> M3 resistant to heat/ will not melt <br> M4 inert/ unreactive | REJECT double bond between carbons for both marks <br> n must be on RHS of bracket and extension bonds do not have to go through brackets <br> ALLOW coating will not react with the food/ nontoxic/ not poisonous <br> ALLOW high melting point | 2 |
|  |  |  | Total 10 |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Any one of the following \\
M1 bright/white light OR bright/white flame \\
M2 white solid/powder/ash
\[
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
\]
\end{tabular} \& \begin{tabular}{l}
ALLOW grey solid/powder /ash \\
ALLOW white smoke \\
REJECT charges on Mg and/or \(\mathrm{O}_{2}\) \\
ACCEPT \(2 \mathrm{Mg}^{2+} \mathrm{O}^{2-}\) \\
ALLOW multiples and fractions \\
IGNORE state symbols even if incorrect
\end{tabular} \& 1

1 <br>

\hline (b) \& | M1 (volume of oxygen =) $100-28$ OR $72\left(\mathrm{~cm}^{3}\right)$ |
| :--- |
| M2 (volume of air at start =) $275+100$ OR 375 ( $\mathrm{cm}^{3}$ ) |
| M3 $72 \div 375 \times 100$ OR 19.2 (\%) |
| M4 19 (\%) | \& | Correct answer without working scores 4 |
| :--- |
| ALLOW ECF throughout |
| Use of 275 gives an answer of 26 scores 3 |
| Alternative method |
| M1 (volume of air left=) 275 + 28 OR $303\left(\mathrm{~cm}^{3}\right)$ |
| M2 $303 \div 375 \times 100$ OR 80.8 (\%) |
| M3 100-80.8 OR 19.2 |
| M4 19 (\%) | \& 4 <br>


\hline (c) (i) \& | M1 bubble/pass/add carbon dioxide/gas into limewater |
| :--- |
| M2 (limewater) turns cloudy/milky | \& | ALLOW white precipitate |
| :--- |
| M2 dependent on mention of limewater |
| REJECT addition of extra reagent for both marks | \& 2 <br>

\hline
\end{tabular}

| (ii) | An explanation that links two of the following three <br> points <br> M1 carbon dioxide is a greenhouse gas | ACCEPT description of <br> greenhouse effect <br> REJECT reference to the <br> ozone layer for M1 |
| :--- | :--- | :--- | :--- |
| M2 (that causes) climate change/ global warming | ACCEPT a result of climate <br> change (e.g. melting of <br> polar icecaps/flooding <br> /wildfires) |  |
| M3 oceans becoming more acidic | IGNORE reference to acid <br> rain |  |
|  |  | Total 10 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $6 \quad(a)$ <br> (i) <br> (ii) <br> (iii) | $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ carbon dioxide/ $\mathrm{CO}_{2}$ /gas escapes/is given off OWTTE <br> to stop acid/liquid/solution leaving flask/spitting out OWTTE | IGNORE carbon dioxide is a gas alone <br> REJECT to stop carbon dioxide/gas escaping | 1 1 1 |
| (b) <br> (i) <br> (ii) | An explanation that links four of the following points <br> M1 the curve is steep(est) at the start <br> M2 because the reaction is fast(est) at the start <br> M3 the curve becomes less steep because the reaction slows down <br> M4 the curve levels off/stops going up when the acid has all been used up <br> OR <br> M1 the curve is steep(est) at the start <br> M2 because the (acid) concentration is high(est) <br> M3 the curve becomes less steep as the solution/ acid is becoming more dilute <br> M4 the curve levels off/ stops going up when the acid has all been used up <br> M1 curve starting at the origin and steeper than the original curve <br> M2 curve levelling off before and at the same level as the original curve | ALLOW there are the most (acid) particles in solution/per unit volume OWTTE <br> ALLOW the curve becomes less steep as there are fewer acid particles/particles in solution /per unit volume <br> IGNORE references to energy | $4{ }^{4}$ |
|  |  |  | Total 9 |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 7 (a) \& heat (energy) is given out OWTTE \& \begin{tabular}{l}
ACCEPT thermal energy is given out \\
ACCEPT thermal energy store of mixture decreases
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
C displacement \\
A is incorrect as it is not a combustion reaction \(B\) is incorrect as it is not a decomposition reaction \(D\) is incorrect as it is not a neutralisation reaction \\
M1 the (blue) colour fades/ solution turns (from blue) to colourless \\
M2 pink-brown/pink coating (on zinc) \\
silver is less reactive/ lower in the reactivity series than copper ORA
\end{tabular} \& \begin{tabular}{l}
ALLOW any combination of pink, orange, brown \\
ALLOW silver cannot displace copper
\end{tabular} \& 1

2

1 <br>

\hline (c) \& | M1 temperature change $=37.0-20.5 \mathrm{OR} 16.5\left({ }^{\circ} \mathrm{C}\right)$ |
| :--- |
| $M 2 Q=50.0 \times 4.2 \times 16.5$ |
| M3 3465 (J) |
| M4 3.465 (kJ) | \& | correct answer without working scores 4 |
| :--- |
| ALLOW ECF on M1 |
| ALLOW ECF on M3 |
| ALLOW any number of sig figs except 1 | \& 4 <br>

\hline \& \& \& Total 9 <br>
\hline
\end{tabular}

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

